

Non-destructive Testing

Dowel positions

Pavement thickness

Dirk Anke, MIT Mess- und Prüftechnik GmbH, Dresden - Germany

EUPAVE, Workshop on Best Practices in Concrete Paving, May 22, 2024

Dowels in expansion joints

 Unhindered horizontal movement of the concrete slabs

 Load transfer between adjacent concrete slabs

• Equal heights of adjacent concrete slabs

• Vertical center of slab

 Center of gravity in joint cut plane

• Perpendicular to joint cut plane

Definition of misalignments

Horizontal translation

Side shift

Horizontal misalignment

Vertical translation

Vertical misalignment

EUPAVE, Workshop on Best Practices in Concrete Paving, May 22, 2024

'Best practice' can mean...

performing a measurement procedure correctly

or

applying the most feasible measuring method

EUPAVE, Workshop on Best Practices in Concrete Paving, May 22, 2024

Measurement procedure

EUPAVE, Workshop on Best Practices in Concrete Paving, May 22, 2024

	Pulse-induction method	Georadar
Constraints of measuring principle	 Susceptible to electro-magnetic influences 	 Signals are influenced by moisture: Measurements only weeks after curing
Accuracy	 4 mm for depth and misalignment 8 mm for side shift	10 mm for depth and misalignmentNo direct measurement of side shift
State-of-the art technology	 Specialized for dowel position measurement Results within seconds after measurement Automated and fast generation of reports for a series of measurements 	 Flexible use for different purposes Laborious measurement Laborious manual data analysis that requires expert skills

Pulse-induction method

MIT Mess- und Prüftechnik GmbH, workshop on dowel position and thickness measurement

HOW TO MEASURE?

EUPAVE, Workshop on Best Practices in Concrete Paving, May 22, 2024

WHY MEASURE?

EUPAVE, Workshop on Best Practices in Concrete Paving, May 22, 2024

Two hypotheses we encounter:

- "The dowels are definitely lined up in a row."
- "The dowels have nothing to do with the damage to the

surface."

Case study 1: Depth fluctuations and great depths

Case study 1: Correction of the installation process after the measurement

Case study 2: Comparative measurements in fresh concrete

Case study 2: Measurement right after the paving

Signal chart

Case study 2: Measurement 6 hours later

Signal chart

Case study 2: Measurement right after the paving

Signal chart

Case study 2: Measurement 6 hours later

Comparison (before/after)

Signal chart

Depth

Vertical misalignment

	-1	-1	0	-1	-2	-1	-1	-34	-2	-2	-2	-2	-3	-3
nent	-1	-1	-1	0	-1	0	-1	-19	0	0	-1	-1	-2	-1

Actual dowel bar positions

Case study 3: repeating patterns in neighboring joints

Joint 1

Joint 2

Joint 3

Joint 4

EUPAVE, Workshop on Best Practices in Concrete Paving, May 22, 2024

ZERSTÖRUNGSFREIE MESS- UND PRÖFTECHNIK

Case study 3: repeating patterns - statistics on ten joints

Permissible depth: 115 mm - 135 mm Statistical values: minimum, maximum, mean value

Case study 4: Side shift due to incorrect joint cut

Figure 1

EUPAVE, Workshop on Best Practices in Concrete Paving, May 22, 2024

Road damage due to depth deviation

Figure 2

Road damage due to misaligned dowels

Effects of misalignments on the road surface

Road damage due to shifted basket positions

Research programs in the USA (2009 - 2020)

Field studies

2300 Joints in 17 states

Figure 7

Laboratory tests

Tensile tests Shear tests

Theoretical models

Finite elements analysis

Figure 8

Figure 9

Non-destructive Testing

Pavement thickness

MIT Mess- und Prüftechnik GmbH, workshop on dowel position and thickness measurement

HOW TO MEASURE?

EUPAVE, Workshop on Best Practices in Concrete Paving, May 22, 2024

WHY MEASURE?

EUPAVE, Workshop on Best Practices in Concrete Paving, May 22, 2024

Electromagnetic method for thickness measurement

The simple measurement procedure takes only a few seconds and offers immediate and accurate results.

Current practice in Germany/Europe

Standards exist in Germany for asphalt (in accordance with European standard EN 12697-36) and concrete.

ZERSTÖRUNGSFREIE MESS-

Up to now, road pavement thickness in Germany has mainly been measured for asphalt and to a lesser extent for concrete.

The scope of application depends on the requirements of the respective standards.

Relevance for longevity of the road

In addition to the splitting tensile strength, the pavement thickness is a crucial factor for the service life of the road.

Determining the thickness profile of the road

The basis for the requirement of the standard for concrete roads is the assumption that statistical parameters of normally distributed thicknesses can be determined on the basis of a few values.

Study on the density of thickness measurements

ZERSTÖRUNGSFREIE MESS- UND PRÜFFECHNIK

Determining the thickness profile of the road based on drill cores taken at specific points is only possible to a limited extent.

Scientific studies recommend more closely meshed measurements for determining the average concrete thickness and local outliers.

Non-destructive measuring methods are well suited for this.

Figure 11

Thank you for your attention!

Image sources	
Fig. 1	Overstreet M, Public domain, via Wikimedia Commons [online] https://commons.wikimedia.org/wiki/File:Concrete_saw.jpg, accessed 26/02/2024
Fig. 2:	Seo Y., Kim S. (2013): "Longitudinal Cracking at Transverse Joints Caused by Dowel Bars in Jointed Concrete Pavements", KSCE Journal of Civil Engineering 2013, 17 (2): page 395 - 402
Fig. 3, 5, 6	Yaqoob S. (2024): "Concrete pavements' repair techniques and numerical assessment of dowel bar load transfer efficiency", KTH [online] https://kth.diva-portal.org/smash/get/diva2:1834639/FULLTEXT01.pdf, accessed 26/02/2024
Fig. 4	Khazanovich L. et al (2010): "Evaluation of Alignment Tolerances for Dowel Bars And Their Effect on Joint Performance", Report No. FHWA/ MDOT RC- 1395, Washington D.C.
Fig. 7, 9	Snyder M. (2018): Dowel Bar Alignment: What Do We Need? What Should We Expect?, ACPA [online] https://acpa-se.org/wp- content/uploads/2018/11/2018-10-29-NCCPC-Snyder-Dowel-Alignment.pdf, accessed 26/02/2024
Fig. 8	Saxena P. et al (2009): Laboratory and Finite Element Evaluation of Joint Lockup. Transportation Research Record 2095, page 34 - 42
Fig. 10 Fig. 11	Schmerbeck R. (2016): "Anwendung der RDO Beton im VOB-Vertrag", in "Griffig 1/2016", Düsseldorf: Verlag Bau+Technik Vancura M. et al (2013): "Concrete Pavement Thickness Variation Assessment with Cores and Nondestructive Testing Measurements", Journal of the Transportation Research Board, 2347/ page 61 – 68